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ABSTRACT

Reinforcement learning algorithms that use eligibility traces,
such as Sarsa(λ), have been empirically shown to be ef-
fective in learning good estimated-state-based policies in
partially observable Markov decision processes (POMDPs).
Nevertheless, one can construct counterexamples, problems
in which Sarsa(λ < 1 ) fails to find a good policy even
though one exists. Despite this, these algorithms remain
of great interest because alternative approaches to learn-
ing in POMDPs based on approximating belief-states do
not scale. In this paper we present SarsaLandmark, an al-
gorithm for learning in POMDPs with ”landmark” states
(most man-made and many natural environments have land-
marks). SarsaLandmark simultaneously preserves the ad-
vantages offered by eligibility traces and fixes the cause of
the failure of Sarsa(λ) on the motivating counterexamples.
We present a theoretical analysis of SarsaLandmark for the
policy evaluation problem and present empirical results on
a few learning control problems.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Theory

Keywords

reinforcement learning, partial observability, POMDP, land-
mark

1. INTRODUCTION
Sequential decision problems in which the agent can sense

the complete state of the environment can be modeled as
Markov decision processes (MDPs) for which considerable
theoretical and empirical progress has been achieved in de-
veloping planning and reinforcement learning algorithms [12].
The picture is far less rosy for problems in which the agent
cannot sense the complete state of the environment. Such
agent-environment interactions suffer from what is called
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perceptual aliasing (or hidden state) and are modeled as
partially observable MDPs or POMDPs [4]. Most real-world
sequential decision problems are POMDPs and thus solving
them efficiently is of great interest and significance to AI.

A central idea behind most approaches to planning and
learning in POMDPs is to treat the problem as an MDP
whose state is the agent’s state of information, or belief-
state. While there have been advances in approximate algo-
rithms for these problems, there is still a fundamental issue
in scaling these approaches because a POMDP with n un-
derlying discrete states converts to a much larger MDP that
has a (n− 1)-dimensional continuous state space.

Alternative, more successful, approaches to learning in
POMDPs estimate (usually discrete) state from the history
of interaction and then use the temporal difference (TD)
family of algorithms (Sutton, 1988) to learn policies con-
ditioned on the estimated states. In particular, TD algo-
rithms that use eligibility traces, e.g., Sarsa(λ), have been
empirically shown to be effective at finding good estimated-
state-based policies in POMDPs [6, 8, 9]. Nevertheless,
one can construct simple counterexample POMDPs in which
Sarsa(λ) fails to find good policies even though they exist.
Despite this, these algorithms remain of great interest be-
cause of the scaling difficulties with belief-state approaches.

In this paper, we present SarsaLandmark, an algorithm
for learning in POMDPs with ”landmarks” or special states
that are not hidden to the agent. Most man-made environ-
ments are engineered to have landmarks, e.g., street names
at road intersections, labels at doorways in offices and at en-
trances to buildings, RF beacons in robotic environments,
etc. Even in purely natural environments, we often look for
landmarks by looking for perceptually salient and distinct
states. Our algorithm, SarsaLandmark, exploits the pres-
ence of these landmarks to overcome a cause of the failure of
Sarsa(λ) on the motivating counterexample while preserving
the intuitive advantages of eligibility traces in hidden state
environments.

Our main contributions in this paper are a) an exam-
ple that provides an explanation of how Sarsa(λ) can fail
in POMDPs (in Section 4), b) SarsaLandmark, an algo-
rithm that adapts Sarsa(1) to landmark-POMDPs (in Sec-
tion 5), c) a theoretical analysis of SarsaLandmark for the
policy evaluation problem (in Section 6), and d) empirical
results for SarsaLandmark on three learning control prob-
lems (in Section 7). These contributions are significant be-
cause landmark-POMDPs are fairly ubiquitous and because
SarsaLandmark should scale as well as Sarsa(λ) and perform

Cite as: SarsaLandmark: An Algorithm for Learning in POMDPs with 
Landmarks, Michael R. James, Satinder Singh, Proc. of  8th Int. Conf. 
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker, 
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, 
Hungary, pp. 585–592
Copyright © 2009, International Foundation for Autonomous Agents 
and Multiagent Systems (www.ifaamas.org), All rights reserved.



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

586

better in such problems.

2. POMDP BACKGROUND
In this section we briefly describe the POMDP formu-

lation of reinforcement learning problems. A POMDP is
specified by a tuple < S, A, O, P, B, R, γ >. The environ-
ment can be in one of a finite set of states S, the agent can
choose from among a finite set of actions A, and the agent’s
sensors provide it with an observation from a finite set O.
On executing action a ∈ A in state s ∈ S the agent receives
expected payoff Ra(s) and the environment transitions to a
random next state s′ ∈ S with probability P (s′|s, a). The
probability of the agent observing o ∈ O given that the hid-
den state of the environment is s ∈ S is denoted by B(o|s).
The agent’s goal is to choose actions in such a way as to
maximize the expected value of the discounted sum of pay-
offs over an infinite horizon, i.e., maximize

E{
∞X

t=0

γtrt}

where rt is the payoff received at time step t, and 0 ≤ γ < 1
is a discount factor that makes future payoffs less valuable
than the immediate payoffs.
Landmark POMDPs: In this paper, we consider Landmark-
POMDPs, i.e., POMDPs with one or more landmark states.

Definition 1. A landmark state is a state that has a
unique observation: state s ∈ S is a landmark state, if
∃ o ∈ O such that B(o|s) = 1 and ∀ s′ �= s, B(o|s′) = 0.

We will assume that the agent knows when it is in a land-
mark state and when it is not. Indeed, a state that has a
unique observation but this fact is unknown to the agent
will not be treated as a landmark state. Note that if all
the states of a POMDP are landmark states then it is fully
observable and is in fact an MDP.

In MDPs it is known that the agent can choose optimal
actions as a function of the most recent state alone, i.e.,
there exists an optimal policy of the form S → A. Con-
sequently TD algorithms without eligibility traces, such as
Q-learning are able to learn optimal policies from sufficiently
exploratory experience with an environment [13]. However,
even in MDPs, using eligibility traces can confer a compu-
tational advantage over not using them [12] in the form of
faster convergence to the optimal policy.

In POMDPs, on the other hand, the optimal action may
depend on the history of action-observation pairs rather than
just on the most recent observation. Learning a mapping
from arbitrarily long histories to actions would be infeasi-
ble. Therefore, most approaches to learning in POMDPs
extract a kind of ”estimated state” from the history of obser-
vations, often simply by remembering a very small number
of past observations, and then learning policies that map
such estimated-state to actions.

Except in the simplest of cases, the learning problem re-
mains a POMDP even with estimated states, and it is known
that algorithms that don’t use eligibility traces fare badly in
POMDPs [10]. Loch and Singh (1998) empirically showed
that Sarsa(λ), which does use eligibility traces, is often able
to overcome the presence of hidden state and learn good
estimated-state-based policies (see Perkins & Precup, 2002)
for further empirical and theoretical corroboration of this).

Figure 1: This figure shows the eligibility trace for
four different algorithms: Sarsa(λ < 1), Sarsa(0),
Sarsa(1), and SarsaLandmark.

Next, we describe the Sarsa(λ) family of algorithms.

3. SARSA(λ) BACKGROUND
Sarsa(λ) maintains an eligibility trace, η, as well as a Q-

value, Q, for every (estimated-state, action) pair. Hereafter,
we will use x to denote estimated-states. On experiencing
transition < xt, at, rt, xt+1 > at time step t, the following
updates are performed in order:

ηt(xt, at) = 1

ηt(x, a) = γληt−1(x, a), ∀ (x �= xt or a �= at)

Qt+1(x, a) = Qt(x, a) + αηt(x, a)δt, ∀x, a, (1)

where δt = rt + γQt(xt+1, at+1)−Qt(xt, at) is the TD-error
at time step t, α is the step size, and 0 ≤ λ ≤ 1 is a pa-
rameter giving rise to a family of algorithms. The eligibility
trace value η(x, a) determines how much credit/blame is as-
signed to each (x, a) for the TD-error. The Q-values can
be initialized to any value. The eligibility traces are initial-
ized to zero, and in episodic tasks they are reinitialized to
zero after every episode. At every time step, the eligibility
trace for each (x, a) is reduced by a multiplicative factor of
λ. Thus, looking backwards in time the (x, a) that occurred
more recently gets more credit for the TD-error.

In order for this algorithm to learn good policies, we have
to ensure that all actions are tried often enough in each
state. Often, an ε-greedy policy is used — such a policy
takes a random action with probability ε and an action that
is greedy with respect to the Q-values with the remaining
(1− ε) probability.

Note that the above formulation of Sarsa(λ) is general and
applies to MDPs by letting xt be st, as well as to POMDPs
as long as the estimated state is discrete and finite (as one
example, xt could just be ot).

Figure 1 shows the evolution of the eligibility trace over
time for various special values of λ. For λ < 1 the eligibility
of (x, a) decreases exponentially with time as in the top left-
hand graph. For λ = 0 the eligibility of (x, a) lasts one time
step only as shown in the bottom left-hand graph. In this
case, the Q-value update at time t updates only (xt, at) as
follows:

Qt+1(xt, at) = Qt(xt, at) + αδt
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Figure 2: POMDP counterexample to Sarsa(λ). See
text for details.

and leaves every other Qt(x, a) unchanged. If λ = 1, we get
the Monte-Carlo algorithm whose eligibility trace does not
decay at all as seen in the top right-hand graph in Figure 1.
In episodic problems the eligibility trace drops to zero when
a terminal state is reached. In this case, each Qt(xt, at)
is updated based on the actual discounted sum of payoffs
achieved from time t onwards with no role played by the
Q-values of the (x, a) that appear along the trajectory.

Increasing λ from 0 to 1 interpolates between these two
extremes; the smaller the λ the more the updates are in-
fluenced by the current estimate of the Q-values, and the
larger the λ the greater the influence of the sequence of ac-
tual payoffs obtained. There is a bias-variance tradeoff faced
in choosing a good λ: the higher the λ the higher the vari-
ance of the update, and the lower the λ the higher the ”bias”
introduced by the estimated Q-values. Monte-Carlo has the
highest variance and no bias, while Sarsa(0) has the least
variance and the most bias.

In the case of MDPs, as learning proceeds and the Q-
values improve the bias introduced by using the inaccurate
Q-values in the updates decreases over time. Thus, using
intermediate values of λ in MDPs still allows convergence
to the true Q-values. Indeed, much empirical work [12] and
some theoretical work [5] has shown that intermediate values
of λ provide the fastest rate of convergence. As we will see
in the next section, the case for POMDPs is very different.

4. MOTIVATING COUNTEREXAMPLE
As shown in Loch & Singh (1998), Sarsa(λ) finds near-

optimal estimated-state-based policies in many of the test-
bed POMDPs [1] popular in the RL literature. Nevertheless,
we show a simple artificial POMDP in Figure 2 in which it
has difficulty. This example will motivate our SarsaLand-
mark algorithm.

Consider learning memoryless (estimated-state is just the
immediate observation) policies in the deterministic landmark-
POMDP of Figure 2. In this figure, non-landmark states are
represented by circles while landmark-states are denoted by
squares. Rewards are shown on the edges corresponding to
the actions. Only state 1 has multiple actions: solid, dashed,
and dotted, to choose from. State 6 is a terminal state and
all states have unique observations except for states 2 and

Reward r min.λ
8.0 0.76
4.0 0.89
2.0 0.94
1.0 0.971
0.5 0.985
0.25 0.992
0.125 0.9962
0.0625 0.9981

Table 1: For various values of the reward r, this
table shows the minimum λ in Sarsa(λ) that solves
the POMDP in Figure 2 with C = −150.

3 which have the same observation obs2. State 3 leads to
a large negative reward (C) while state 2 leads to the only
positive reward (r). States 2 and 3 produce the same ob-
servation, and because of this the Q-value of this observa-
tion will be determined by the relative frequency with which
these two states are experienced. We will argue that for any
λ < 1, it is possible to choose the value of r and C to make
Sarsa(λ) converge to using the dotted-action in observation
obs1 instead of the optimal solid-action.

Note that the Q-value of the dashed-action will always
be negative (or at least always be less than or equal to the
value of the solid-action), while the Q-value of the dotted-
action will always be zero. Therefore, in order for Sarsa(λ)
to pick the solid-action, the Q-value(obs 1,solid-action) has
to be positive. Sarsa(λ) with ε-greedy exploration for any
fixed ε > 0 will explore the dashed-action with probability
at least ε/3, and therefore we can make the value of obser-
vation obs2 as negative as we want by making C as negative
as needed. The Q-value of the solid-action in observation
1 will be a weighted combination of the negative value of
observation obs2 and the positive reward r. The smaller the
λ, the more the weight on the negative value of observation
obs2; conversely the larger the λ the more the weight on the
positive r. Therefore, by making the value of obs2 more and
more negative we are forced to use larger and larger λ in
order to make Sarsa(λ) work in this problem.

Table 4 experimentally confirms the above argument about
the need for large λ. The first column specifies the value of
r (smaller r means a more negative value for obs2), while
the second column specifies the corresponding, empirically-
found, minimum λ value below which the algorithm con-
verges to the sub-optimal dotted-action. These experiments
were performed with a fixed exploration rate of 30% for
which we used a C = −150. The table empirically con-
firms that for any λ < 1 we can always choose a small
enough r > 0 to make Sarsa(λ) find a sub-optimal policy.
For smaller exploration rates, we would have to use a more
negative value for C to get similar results.

Of course, Sarsa(1) will converge to the optimal solid-
action for all settings of r and C in Figure 2. This is because
the Monte-Carlo algorithm updates Q-values based solely on
the discounted sum of rewards obtained and does not use the
Q-value of obs2 at all. Thus, Sarsa(1) will converge to the
correct value, γr, for the solid-action. This then seems to
imply that we should simply use Sarsa(1) to learn policies in
POMDPs. But there is a catch; just as for MDPs Sarsa(1)
scales poorly because of the high variance obtained by us-
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ing the discounted sum of a long trajectory of rewards. In
MDPs we address this issue of large variance by using λ < 1.
We cannot adopt that solution for POMDPs because as our
counterexample shows the bias introduced by the estimated
Q-values need not go to zero over time (in particular this
was the case for the Q-value of obs2 in the counterexample).

What we would like is an algorithm that has a lower
variance than Sarsa(1) but computes the same Q-values as
Sarsa(1). An algorithm that ”bridges” over or skips the non-
landmark states and uses Q-values only of the landmark-
states would accomplish this goal. SarsaLandmark, pre-
sented next, is such an algorithm.

5. SARSALANDMARK
The central idea behind SarsaLandmark is quite simple.

We use non-decreasing eligibility traces, just as in Sarsa(1),
except that whenever we encounter a landmark state, we
drop the eligibility trace to zero (see bottom right-hand
graph in Figure 1). Note that if it is applied to an MDP,
SarsaLandmark is equivalent to Sarsa(0) and if applied to a
POMDP with no landmark states (the terminal state is al-
ways a landmark state, however), it is equivalent to Sarsa(1).
The update equations look like this: on experiencing transi-
tion < xt, at, rt, xt+1 > at time step t, the following updates
are performed in order:

ηt(xt, at) = 1

If xt is a landmark state, then

ηt(x, a) = 0, ∀ (x �= xt or a �= at),

else

ηt(x, a) = γηt−1(x, a), ∀ (x �= xt or a �= at)

and finally,

Qt+1(x, a) = Qt(x, a) + αηt(x, a)δt, ∀x, a,

The net effect is that the Q-value of (xt, at) gets updated
based on the discounted sum of rewards until the first occur-
rence of a landmark state plus the appropriately discounted
value of the landmark state. Thus, in the POMDP of Fig-
ure 2, SarsaLandmark will converge to the same value as
Sarsa(1) because it too will bridge over obs2 in computing
the value of (obs1, solid-action).

For general landmark-POMDPs, it is clear from Figure 1
that for the same episodic experience, the eligibility traces
of SarsaLandmark will never be longer than the eligibility
traces of Sarsa(1) and will mostly be shorter. In other words,
SarsaLandmark will update on the basis of a shorter trajec-
tory than will Sarsa(1). This in turn means that SarsaLand-
mark will have a lower variance than Sarsa(1) (because the
variances of the rewards along a trajectory add and hence
the shorter the trajectory the smaller the variance). In fact,
the more landmark states there are in a POMDP the lower
will be the variance of SarsaLandmark relative to Sarsa(1).
But of course, while the estimated Q-values of landmark
states are inaccurate, the SarsaLandmark update will have
a bias.

The situation is much like what we faced with decaying
eligibility traces in the MDP setting. And just like in that
setting the bias will go to zero as the Q-value estimates of the

landmark states improve and SarsaLandmark will converge
faster than Sarsa(1)1.

6. ANALYSIS FOR POLICY EVALUATION
In this section, we analyze the performance of SarsaLand-

mark at policy evaluation in which the goal is to estimate
the expected value of the discounted sum of payoffs obtained
by executing a fixed policy. This is a subproblem of the
more general problem of learning improved policies and is
the same setting in which most of the analyses of eligibility-
trace based algorithms have been done (e.g., [2, 5]). For ease
of analysis, here we will only consider the case where the
estimated-state is the immediate observation. Our results
extend to the case where the estimated-state is a function
of a bounded history window.

Let π be the stochastic memoryless policy we wish to eval-
uate. By a slight abuse of notation we will let π(a|o) denote
the probability of executing action a in observation o under
policy π. Executing policy π in the POMDP will execute a
policy πM in the underlying MDP, where:

πM (a|s) =
X

o

π(a|o)B(o|s).

Policy πM will induce a Q-value function over state-action
pairs (s, a) in the underlying MDP that we denote QπM (s, a)
— this is the expected value of the discounted sum of payoffs
received in the MDP by starting in state s, executing action
a and following policy πM thereafter. We also define the
stationary conditional probability of the underlying state
being s when the agent observes o while following policy π,
as follows:

Prob(s|o, π) =
O(o|s)Prob(s|πM )

Prob(o|π)
,

where Prob(s|π) is the stationary distribution over states
under policy πM , and Prob(o|π) is the stationary distribu-
tion over observations under policy π.

Next, we derive a formal relationship between QπM and
the Q-value function, Qπ, that SarsaLandmark will converge
to when following policy π.

Theorem 1. For any landmark-POMDP and for any mem-
oryless policy π, under standard stochastic approximation
conditions on the step-size (

P
α = ∞ and

P
α2 < ∞),

SarsaLandmark will converge asymptotically w.p.1. to a Q-
value function Qπ, such that the following relationship holds:
∀ o ∈ O, a ∈ A:

Qπ(o, a) =
X

s∈S

Prob(s|o, π)QπM (s, a) (2)

where Prob(s|o, π) and QπM are defined above.

Proof (sketch): The key observation is that SarsaLand-
mark updates never use estimated Q-values of any observation-
action pair except when the observation is that of a land-
mark state. In particular, the updates of the Q-values of
(landmark-state,action) proceed just as they would in the

1Recall that the main difficulty with using Sarsa(λ < 1) is
that the bias in the Q-value estimates of some estimated-
states never goes to zero; SarsaLandmark avoids that fate
by only using payoffs and the Q-values of landmark states
to update the Q-values of estimated-states.
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Figure 3: Small Landmark-POMDP. The state la-
bels are on the upper left corner and the observa-
tion label is in the middle of the square. This ex-
ample was inspired by McCallum’s (1993) Cheese-
Maze problem, except that we relabeled the obser-
vations to allow for a good memoryless policy. In-
spection of the figure will confirm that the follow-
ing memoryless policy [(0,Up),(1,U), (2,D),(3,R),
(4,D),(5,U),(6,R),(7,U),(8,U),(9,R),(10,D)] is opti-
mal.

underlying MDP (following the given policy), and thus con-
verge to QπM (sL, a) where sL corresponds to the underlying
MDP state for the given landmark state.

Given this convergence for landmark states and the fact
that the Q-values for all other observation-action pairs are
updated only on the Q-values of the landmark states, the
updates of the other (o, a) pairs will mix in the updates of
the underlying hidden state-action (s, a) pairs in proportion
to Prob(s|o, π).

Corollary 1. The asymptotic Q-value of SarsaLandmark
for any landmark state will be equal to the Q-value of the
same state in the underlying MDP, i.e., if s is a landmark
state with observation o, then

Qπ(o, a) = QπM (s, a)

Corollary 2. For any landmark-POMDP and for any
memoryless policy π, SarsaLandmark and Sarsa(1) or Monte-
Carlo converge asymptotically to the same Q-value function
of observation-action pairs.

Corollary 2 is the main theoretical result of this paper and
follows immediately from Theorem 1 and from the fact that
Monte-Carlo is already known to converge to the RHS of
Equation 2 [3].

7. EMPIRICAL RESULTS FOR LEARNING

CONTROL
Here we empirically test the performance of SarsaLand-

mark on a few landmark-POMDPs.

7.1 Small deterministic landmark-POMDP
Figure 3 shows our first test problem. It was designed to

have a memoryless policy that is optimal, and our goal is to

Figure 4: A larger rooms-world. The doorways be-
tween rooms are landmark states. The goal state is
in the bottom right corner. The observations for the
states inside the room are defined in the text.

check whether SarsaLandmark will find the optimal policy
and whether the Q-values of landmark states will converge
to their true Q-values in the underlying MDP (as predicted
by the theoretical analysis).

Figure 3 shows a grid world, with four actions (move up,
down, left, and right) available in each state. The actions
are deterministic and the result of an illegal action is just to
remain in the same state. For each state, the numbers in the
upper left corner show the state in the underlying MDP. The
numbers in the middle show the observation received by the
agent. There are seven landmark states that are highlighted
in the figure by shaded squares, and that have observation
numbers 5 to 11. Landmark state 11 is a goal/terminal state.
Rewards are −1 for all transitions, except for the transition
into the terminal state, for which the reward is 20. The
discount factor is 0.9.

SarsaLandmark is an on-policy algorithm, and thus the
Q-values learned depend on the actual exploratory policy
being followed. To verify convergence to an optimal pol-
icy, we could use a constant but small exploration rate, but
in order to verify that the Q-values learned for landmark
states converge to the Q-values of the same states in the un-
derlying MDP, we need to reduce the exploration rate over
time. In particular, we used ε-greedy SarsaLandmark with
a decreasing exploration rate that started at 0.05, and was
decreased by 0.00001 with each action taken. We were able
to confirm for a set of different step-size schedules, that the
learned policy converged to an optimal memoryless policy
and the Q-values of the landmark states converged to those
of the same states in the underlying MDP.

7.2 Larger landmark-POMDPs
In the preceding problem, the existence of a good memo-

ryless policy allowed us to use the immediate observations as
estimated state. How will SarsaLandmark fare in problems
that require the use of memory in estimating state? To test
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Figure 5: Average number of steps to the goal in the
rooms-world of Figure 4 as a function of number of
training episodes. Note the log-scale on the y-axis.

this as well as to test how SarsaLandmark scales to larger
POMDPs, we constructed the two rooms-world problems
shown in Figures 4 and 6.

Each rooms-world consist of many differently sized and
shaped rooms. Doorways between rooms are landmarks and
thus produce unique observations. When not in a landmark
state, the agent receives an observation based on the dis-
tance to the walls in each of the four cardinal directions.
Each distance is categorized into one of four classes: next to
the wall, one step from the wall, closer to the wall than to
the wall in the opposite direction, and further from the wall
than to the wall in the opposite direction. Therefore, there
are roughly 44 = 256 non-doorway observations. There are
four actions that attempt to move the agent north, south,
east and west. The actions succeed only with probability
80% and failure results in no movement. An action that
would move the agent into a wall also results in no move-
ment. In both domains, there is a single terminal/goal state
and a transition into it results in a reward of 20; all other
transitions have zero reward. The discount factor is 0.99.

The following training and testing method was used with
both domains. Every training episode was started on a ran-
domly chosen landmark state. An episode ended when the
agent reached the terminal state. The agent’s performance
was tested after every 500 training episodes; a test consisted
of starting the agent on each landmark state, and then mea-
suring the average number of steps to the goal when follow-
ing a greedy policy. To keep things bounded a test was cut
off if the agent took 5000 steps without reaching the goal.

Next we present results for the smaller of the two rooms-
worlds (Figure 4). It is defined on a grid of size 30 by 45 with
more than 1200 underlying states. There are 39 landmark
observations. The goal state is located in the lower right
corner. As a point of comparison to our results below, we
note that the optimal policy on the underlying MDP takes
an average of 47.86 steps to reach the goal.

First, we tested the performance of constant step-size and
exploration rate SarsaLandmark using just the immediate
observations as estimated state. A range of values of α and
ε were tried and the results were found to be robust to rea-

Figure 6: The largest rooms-world. The doorways
are landmark states. The goal state is the gray
square in the middle of the large room at the top.
The observations for the states inside the rooms are
described in the text along with other details.

sonable choices for these two parameters. Figure 5 presents
results for α = 0.01 and ε = 0.0001. It shows the number
of steps to the goal averaged over starting in each doorway
and over 20 runs as a function of the number of training
episodes.

The average number of steps to the goal settles at about
56.25 steps after about 3500 episodes. The 56.25 step per-
formance is surprisingly close to the 47.86 step performance
of the optimal MDP policy. Further analysis showed that
this was a result of the goal state being in the bottom right
corner and so a policy that generally heads in that direc-
tion seems to work reasonably well. In fact, in this problem
using memory in the estimated state was found not to help
performance.

In order to ensure that the use of memory in estimating
state will help in the next rooms-world (Figure 6), we choose
the goal state to be in the middle of the grid (it is the gray
square in the middle of the large upper room). The size of
the grid is 60 by 80 and while the total number of states
(about 4000) is therefore not large relative to what has been
handled in the case of MDPs, learning in a POMDP of even
this size is infeasible with traditional belief-state approaches.
As a point of reference, the average number of steps to the
goal in the underlying MDP is 60.6 steps.

Again, we first tried SarsaLandmark with just the obser-
vations as estimated state. The training methodology was
exactly the same as for the previous rooms-world. In this
case, however, SarsaLandmark was simply unable to find a
policy that gets to the goal reliably from all doorways. This
is not surprising given the layout of the domain.

As a simple extension of the SarsaLandmark algorithm,
we added memory to the estimated state; specifically, we
allowed the agent to remember the last landmark state it
had seen. The results for α = 0.002 and ε = 0.001 are
shown in Figure 7. It shows the number of steps to the goal
averaged over starting in all doorways and over 20 runs as
a function of the number of training episodes. The figure
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Figure 7: Average number of steps to goal for the
rooms-world of Figure 6 as a function of number of
training episodes. Note the log scale on the y-axis.

shows that in about 35, 000 episodes the average number of
steps to the goal settles to about 93.75. This is quite good
given the fact that the estimated state still leaves the agent
with only partial observability. The problem is too large for
us to be able to otherwise confirm that this is indeed the
best the agent can do in the class of policies representable
as a mapping from its particular estimated-state to actions.

8. DISCUSSION
In this paper, we presented SarsaLandmark, an algorithm

that uses a variable length, non-decaying, eligibility-trace
to solve landmark POMDPs. We showed that it can solve
POMDPs that Sarsa(λ < 1) cannot. We also provided evi-
dence that SarsaLandmark can be viewed as a lower-variance
version of Monte-Carlo or Sarsa(1).
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